Given two strings, find the longest common substring.
Return the length of it.
Example
Example 1:
Input: "ABCD" and "CBCE"
Output: 2
Explanation:
Longest common substring is "BC"
Example 2:
Input: "ABCD" and "EACB"
Output: 1
Explanation:
Longest common substring is 'A' or 'C' or 'B'
Challenge
O(n x m) time and memory.
Notice
The characters in substring should occur continuously in original string. This is different with subsequence.
Notes:
A classic DP problem. The only place needing to pay attention is that: this question is for substring, not subsequence.
let dp[i][j] represents the longest common substring ending with A[i] and A[j], respectively.
Thus,
when A[i] == A[j], dp[i][j] = dp[i-1][j-1] + 1;
else dp[i][j] = 0; (that is the different part to sequnce...)
See the code below:
class Solution { public: /** * @param A: A string * @param B: A string * @return: the length of the longest common substring. */ int longestCommonSubstring(string &A, string &B) { // write your code here int m = A.size(), n = B.size(), res = 0; vector<vector<int>> dp(m+1, vector<int>(n+1, 0)); //dp[i][j]: the lcs ending with A[i] & A[j], respectively. for(int i=1; i<=m; ++i) { for(int j=1; j<=n; ++j) { if(A[i-1] == B[j-1]) { dp[i][j] = dp[i-1][j-1] + 1; res = max(res, dp[i][j]); } // else dp[i][j] = 0; //not necessary } } return res; } };
We can further compress the space.
See the code below:
class Solution { public: /** * @param A: A string * @param B: A string * @return: the length of the longest common substring. */ int longestCommonSubstring(string &A, string &B) { // write your code here int m = A.size(), n = B.size(), res = 0; vector<int> dp(n+1, 0); //dp[i][j]: the lcs ending with A[i] & A[j], respectively. for(int i=1; i<=m; ++i) { for(int j=n; j>=1; --j) { if(A[i-1] == B[j-1]) { dp[j] = dp[j-1] + 1; res = max(res, dp[j]); } else dp[j] = 0;//must have } } return res; } };
No comments:
Post a Comment