This is another question about minimum spanning tree (MST). But we need to convert "digging wells" into "connections": for example, connections to well 0. Thus, it is become the same as Leetcode 1135: Connecting Cities With Minimum Cost
The key point is it will use the standard union-find method. And the algorithm for MST is Kruskal's algorithm which is in a greedy fashion.
See the code below:
- class Solution {
- public:
- int minCostToSupplyWater(int n, vector<int>& wells, vector<vector<int>>& pipes) {
- int res = 0;
- for(int i=1; i<=n; ++i) pipes.push_back({0, i, wells[i-1]});
- sort(pipes.begin(), pipes.end(), [](auto &a, auto &b) {return a[2] < b[2];});
- vector<int> f(n+1, 0);
- for(int i=0; i<f.size(); ++i) f[i] = i;
- int ct = 0;
- for(auto &p : pipes) {
- int a = find(f, p[0]), b = find(f, p[1]);
- if(a != b) {
- f[b] = a;
- res += p[2];
- ++ct;
- if(ct==n) break;
- }
- }
- return res;
- }
- private:
- int find(vector<int> &f, int x) {
- if(f[x] != x) f[x] = find(f, f[x]);
- return f[x];
- }
- };
Here is another implementation using object-oriented design model. See the code below:
- class unite_find {
- private:
- vector<int> rt;
- public:
- unite_find(int x) { //constructor
- for(int i=0; i<x; ++i) rt.push_back(i);
- }
- ~unite_find() {};//destructor
- int find(int x) {
- if(rt[x] != x) rt[x] = find(rt[x]);
- return rt[x];
- }
- void unite(int x, int y) {
- rt[x] = y;
- }
- };
- class Solution {
- public:
- int minCostToSupplyWater(int n, vector<int>& wells, vector<vector<int>>& pipes) {
- int res = 0;
- for(int i=1; i<=n; ++i) pipes.push_back({0, i, wells[i-1]});
- sort(pipes.begin(), pipes.end(), [](const auto &a, const auto &b) {return a[2] < b[2];});
- unite_find uf(n+1);
- for(auto &p : pipes) {
- int a = uf.find(p[0]), b = uf.find(p[1]);
- if(a != b) {
- uf.unite(a, b);
- res += p[2];
- }
- }
- return res;
- }
- };
No comments:
Post a Comment