Saturday, August 24, 2019

Leetcode 1168: Optimize Water Distribution in a Village

https://leetcode.com/problems/optimize-water-distribution-in-a-village/description/


Notes:

This is another question about minimum spanning tree (MST). But we need to convert "digging wells" into "connections": for example, connections to well 0. Thus, it is become the same as Leetcode 1135: Connecting Cities With Minimum Cost 

The key point is it will use the standard union-find method. And the algorithm for MST is Kruskal's algorithm which is in a greedy fashion.

See the code below:

  1. class Solution {
  2. public:
  3.     int minCostToSupplyWater(int n, vector<int>& wells, vector<vector<int>>& pipes) {
  4.         int res = 0;
  5.         for(int i=1; i<=n; ++i) pipes.push_back({0, i, wells[i-1]});
  6.         sort(pipes.begin(), pipes.end(), [](auto &a, auto &b) {return a[2] < b[2];});
  7.         vector<int> f(n+1, 0);
  8.         for(int i=0; i<f.size(); ++i) f[i] = i;
  9.         int ct = 0;
  10.         for(auto &p : pipes) {
  11.             int a = find(f, p[0]), b = find(f, p[1]);
  12.             if(a != b) {
  13.                 f[b] = a;
  14.                 res += p[2];
  15.                 ++ct;
  16.                 if(ct==n) break;
  17.             }
  18.         }
  19.         return res;
  20.     }
  21. private:
  22.     int find(vector<int> &f, int x) {
  23.         if(f[x] != x) f[x] = find(f, f[x]);
  24.         return f[x];
  25.     }
  26. };


Here is another implementation using object-oriented design model. See the code below:

  1. class unite_find {
  2. private:
  3.     vector<int> rt;
  4. public:
  5.     unite_find(int x) { //constructor
  6.         for(int i=0; i<x; ++i) rt.push_back(i);
  7.     }
  8.    
  9.     ~unite_find() {};//destructor
  10.     int find(int x) {
  11.         if(rt[x] != x) rt[x] = find(rt[x]);
  12.         return rt[x];
  13.     }
  14.     void unite(int x, int y) {
  15.         rt[x] = y;
  16.     }
  17. };
  18. class Solution {
  19. public:
  20.     int minCostToSupplyWater(int n, vector<int>& wells, vector<vector<int>>& pipes) {
  21.         int res = 0;
  22.         for(int i=1; i<=n; ++i) pipes.push_back({0, i, wells[i-1]});
  23.         sort(pipes.begin(), pipes.end(), [](const auto &a, const auto &b) {return a[2] < b[2];});
  24.         unite_find uf(n+1);
  25.         for(auto &p : pipes) {
  26.             int a = uf.find(p[0]), b = uf.find(p[1]);
  27.             if(a != b) {
  28.                 uf.unite(a, b);
  29.                 res += p[2];
  30.             }
  31.         }
  32.         return res;
  33.     }
  34. };

No comments:

Post a Comment